Exercise 11

Solve the differential equation.

$$
2 \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r t}$.

$$
y=e^{r t} \quad \rightarrow \quad \frac{d y}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} y}{d t^{2}}=r^{2} e^{r t}
$$

Plug these formulas into the ODE.

$$
2\left(r^{2} e^{r t}\right)+2\left(r e^{r t}\right)-e^{r t}=0
$$

Divide both sides by $e^{r t}$.

$$
2 r^{2}+2 r-1=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{-2 \pm \sqrt{4-4(2)(-1)}}{2(2)}=\frac{-2 \pm \sqrt{12}}{4}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \\
r=\left\{-\frac{1}{2}-\frac{\sqrt{3}}{2},-\frac{1}{2}+\frac{\sqrt{3}}{2}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(-1 / 2-\sqrt{3} / 2) t}$ and $e^{(-1 / 2+\sqrt{3} / 2) t}$. By the principle of superposition, then,

$$
y(t)=C_{1} e^{(-1 / 2-\sqrt{3} / 2) t}+C_{2} e^{(-1 / 2+\sqrt{3} / 2) t}
$$

where C_{1} and C_{2} are arbitrary constants.

